HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 NETWORK THEORY

(ECE Branch)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u> Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	Draw the dual network of RLC series network.	[2M]	1	1
	b)	What is co-efficient of coupling? Two inductively coupled coils have self inductances $L1 = 50$ mH and $L2 = 200$ mH. If the co-efficient of coupling is 0.8, find the value of the maximum possible mutual inductance.	[2M]	2	1
	c)	State maximum power transfer theorem	[2M]	3	2
	d)	Derive h-parameters interms of y-parameters	[2M]	4	3
	e)	Discuss linearity and superposition principle of laplace transforms	[2M]	5	3

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL		
UNIT-I							
2.		Figure shown an oriented connected graph having 4 nodes and 6	[10M]	2	2		
		branches. Determine the incidence matrix A.					
	OR						
3.	a)	Write the procedure for tie-set schedule matrix?	[5M]	1	1		
	b)	Prove the duality condition with an example.	[5M]	4	4		
UNIT-II							
4.	a)	Explain the concept of self-inductance with a neat diagram	[5M]	2	2		

			C				
	b)	Calculate the phasor currents I_1 and I_2 in the circuit of Fig.	[5M]	2	3		
		$4\Omega -j3\Omega + j8\Omega -$ $100 \underline{/0^{\circ}} V (1) j6\Omega + j2\Omega + 12 5\Omega$					
		OR	II				
5.		A series RLC circuit has R=10Ω, L=0.5H and C=40µF. The applied voltage is 100V. Find. a) Resonant frequency b) Quality factor of coil c) Band width d) Upper and lower power frequencies e) Current at half power frequencies	[10M]	3	3		
		UNIT-III					
6.	a)	Find the current I _L . Use millmans theorem.	[5M]	3	2		
		$R_{1} _{5 \Omega} R_{2} _{4 \Omega} R_{3} _{2 \Omega} _{R_{1}} _{4 \Omega} R_{3} _{2 \Omega} _{R_{1}} _{3 \Omega} _{V_{L}} _{4 \Omega} _{R_{2}} _{16 V} _{R_{3}} _{R_{1}} _{8 V} _{3 \Omega} _{V_{L}} _{-} \underbrace{-} _{-} _{-} _{-} _{-} _{-} _{-} \underbrace{-} _{-} \underbrace$					
	b)	Explain maximum power transfer theorem with an example	[5M]	3	2		
	1	OR	II				
7.		In the circuit shown in <i>Figure</i> . Find the value of i_b using <i>Norton</i> equivalent circuit. Take R= 667 Ω	[10M]	3	2		
	UNIT-IV						
8.	a)	Derive the relationship between Z and Y parameters.	[5M]	4	3		

	b)	Find the hybrid parameters of the circuit given in Figure.	[5M]	4	3	
		$I_1 \xrightarrow{I_1} x \xrightarrow{I_2} 2$				
		W 12 ^{2Ω}				
		1° <u>1° </u> °2				
		OR				
9.	a)	Find the z-parameters of the two port network shown in figure below.	[5M]	4	2	
		So.				
		$\sum_{i=1}^{2} \sum_{j=1}^{2}$				
	• `		5.53.63			
	b)	Explain transmission line parameters for two-port networks.	[5M]	4	2	
		UNIT-V				
10.		In the circuit in Fig. , determine the current $i(t)$ when the switch is	[10M]	5	3	
		changed from position 1 to position 2 at $t = 0$ section.				
		10 Ω				
		L _{10T} ± 50V ± 3 ^{00 ±}				
OR						
11.	a)	Derive the current expression in a R – C series circuit by DC	[5M]	5	3	
		excitation.				
	b)	Derive the current expression in a R – L series circuit by DC	[5M]	5	3	
		excitation.				

R18
